HOME
FOTO ATLAS
SYSTEMATIK


MINERAL CLASSIFICATION / SYSTEMATIK der MINERALE

           based on E.H. Nickel & M.C. Nichols (2009), H. Strunz & E.H. Nickel (2001),
           revised by Thomas Witzke (2023)



1. ELEMENTS
(Metals and intermetallic alloys, Metalloids and Nonmetals, Hydrides, Borides, Carbides, Silicides, Nitrides, Phosphides, and Oxy-Titanides)


1.A: Metals and intermetallic alloys


1.AA. Metals
 
1.AA.005. Copper group
 
Aluminium Al cub., Fm3m FOTO IMA 1980-085a
Copper  /  Kupfer Cu cub., Fm3m FOTO G
Brass  /  Messing (Cu,Zn) cub., Fm3m FOTO
Silver  /  Silber Ag cub., Fm3m FOTO G
Gold Au cub., Fm3m FOTO G
Taenite (Fe,Ni) cub., Fm3m FOTO G
Nickel Ni cub., Fm3m FOTO IMA 1966-039
Rhodium Rh cub., Fm3m IMA 1974-012
Palladium Pd cub., Fm3m FOTO G
Iridium Ir cub., Fm3m FOTO Rd
Platinum Pt cub., Fm3m FOTO G
Lead  /  Blei Pb cub., Fm3m FOTO G

Silver polytypes: Silver-3C (cub., Fm3m), very common. Silver-2H (hex., P63/mmc), very rare, is isostructural with Zn, Os, Allargentum (Ag,Sb), Hexaferrum (Fe,Ru,Os,Ir), and Rutheniridosmine (Ir,Os,Ru). Silver-4H (hex., P63/mmc), very rare.
Brass was described without IMA approval, and is identical with α-brass in the system Cu-Zn. Zn can reach up to 38.95 wt.-%, Cu and Zn are disordered. Formally, α-brass is a zincian variety of copper.


 
1.AA.010. Iron group
 
Steinhardtite Al cub., Im3m IMA 2014-036
Vanadium V cub., Im3m IMA 2012-021a
Chromium  /  Chrom Cr cub., Im3m FOTO IMA 1980-094
Iron  /  Eisen Fe cub., Im3m FOTO G
Tungsten  /  Wolfram W cub., Im3m FOTO IMA 2011-004
Zhanghengite CuZn cub., Im3m IMA 1985-049

The cubic Im3m structure of Steinhardtite is stabilized by Fe and Ni, so a more realistic formula would be (Al,Fe,Ni) and it is not a true polymorph of Aluminium in a strict sense.
Zhanghengite corresponds to β-brass in the Cu-Zn system. In the pure system, β-brass is stable above 468ºC. It is isotypic with α-iron. Cu and Zn are disordered.
"Kamacite" = Nickel-bearing iron, discredited in 2006.
Suessite, Fe3Si, space group Im3m, with disordered distribution of Fe and Si, is isostructural (see in 1.BD.).


 
1.AA.015. Indium
 
Indium In tetr., I4/mmm FOTO A


 
1.AA.020. Tin
 
Tin  /  Zinn Sn tetr., I41/amd FOTO G


 
1.AA.025. Zinc group
 
Titanium Ti hex., P63/mmc IMA 2010-044
Zinc  /  Zink Zn hex., P63/mmc FOTO G
Cadmium Cd hex., P63/mmc FOTO IMA 1980-086
Ruthenium Ru hex., P63/mmc FOTO IMA 1974-013
Osmium Os hex., P63/mmc FOTO Rd
Rutheniridosmine (Ir,Os,Ru) hex., P63/mmc FOTO Rd
Schachnerite (Ag1.1Hg0.9) hex., P63/mmc IMA 1971-055
Weishanite (Au,Ag,Hg) hex., P63/mmc IMA 1982-076
Hexaferrum (Fe,Os,Ru,Ir) hex., P63/mmc FOTO IMA 1995-032
Garutiite (Ni,Fe,Ir) hex., P63/mmc IMA 2008-055
Hexamolybdenum (Mo,Ru,Fe,Ir,Os) hex., P63/mmc IMA 2007-029

Rhenium, Re, hex., P63/mmc, discredited, but probably occurs in nature.


 
1.AA.030. Mercury
 
Mercury  /  Quecksilber Hg liquid / trig., R3m FOTO G

Mercury is solid below -38.85ºC.


 
1.AA.035. Cerium
 
Cerium Ce cub. (?) Q

Native cerium, incompletely described from Mare Crisium, The Moon, needs further study.


 
1.AA.040. Manganese
 
Manganese  /  Mangan Mn cub., P4132 -

Native manganese was described without IMA approval, but with relatively good data, from Pt-Au placers, central Aldan shield, Siberia, Russia.


 
1.AA.045. Tantalum
 
Tantalum Ta cub. -

Native tantalum, incompletely described from a few localities, not submitted to IMA, but probably a valid mineral. Needs further study.



 
 
1.AB. Intermetallic alloys with Al
 
1.AB.005. Hollisterite
 
Hollisterite Al3Fe mon., C2/m IMA 2016-034


 
1.AB.010. Kryachkoite
 
Kryachkoite (Al,Cu)6(Fe,Cu) orth., Cmc21 IMA 2016-062


 
1.AB.015. Proxidecagonite
 
Proxidecagonite Al34Ni9Fe2 orth., Pnma IMA 2018-038


 
1.AB.020. Icosahedrite
 
Icosahedrite Al63Cu24Fe13 icosahedral, Fm35 IMA 2010-042

Icosahedrite is the first known natural quasicrystal. The symmetry can't be described with one of the seven common crystal systems. The diffraction pattern is in accordance with an incommensurate lattice with five-, three- and two-fold symmetry.


 
1.AB.025. Decagonite
 
Decagonite Al71Ni24Fe5 decagonal P105/mmc IMA 2015-017

Decagonite is the second known natural quasicrystal. The symmetry can't be described with one of the seven common crystal systems.



 
 
1.AC. Intermetallic alloys with Fe, Co, Ni, Platinum group elements (PGE)
 
1.AC.005. Wairauite group
 
Stolperite CuAl cub., Pm3m IMA 2016-033
Wairauite CoFe cub., Pm3m IMA 1964-015
Chromferide Fe3Cr1-X cub., Pm3m FOTO IMA 1984-021
Ferchromide Cr3Fe1-X cub., Pm3m IMA 1984-022
Skaergaardite PdCu cub., Pm3m IMA 2003-049
Michitoshiite-(Cu) Rh(Cu1-xGex) with x < 0.5 cub., Pm3m IMA 2019-029a

CsCl structure type. From a chemical point, Stolperite doesnt belong to "1.AC. Intermetallic alloys with Fe, Co, Ni, Platinum group elements (PGE)", but was placed here to have all isostructural minerals in one group.


 
1.AC.010. Tetrataenite group
 
Tetrataenite FeNi tetr., P4/mmm FOTO IMA 1979-076
Tetraferroplatinum PtFe tetr., P4/mmm IMA 1974-012b
Ferronickelplatinum Pt(Ni,Fe) tetr., P4/mmm IMA 1982-071
Tulameenite Pt2FeCu tetr., P4/mmm FOTO IMA 1972-016
Potarite PdHg tetr., P4/mmm FOTO G
Tetra-auricupride CuAu tetr., P4/mmm FOTO IMA 1982-005

Tetragonal distorted CsCl structure type. From a chemical point, Tetra-auricupride doesnt belong to "1.AC. Intermetallic alloys with Fe, Co, Ni, Platinum group elements (PGE)", but was placed here to have all isostructural minerals one group.


 
1.AC.015. Auricupride group (Perovskite supergroup, B-site vacant perovskites, Auricupride subgroup)
 
Auricupride AuCu3 cub., Pm3m G
Cuproauride CuAu3 cub., Pm3m Q
Awaruite FeNi3 cub., Pm3m FOTO G
Nisnite SnNi3 cub., Pm3m IMA 2009-083
Chengdeite FeIr3 cub., Pm3m IMA 1994-023
Isoferroplatinum FePt3 cub., Pm3m FOTO IMA 1974-012a
Sidorovite PtFe3 cub., Pm3m IMA 2022-056
Tomamaeite PtCu3 cub., Pm3m IMA 2019-129
Yixunite InPt3 cub., Pm3m IMA 1995-042
Atokite SnPd3 cub., Pm3m FOTO IMA 1974-041
Rustenburgite SnPt3 cub., Fm3m IMA 1974-040
Zvyagintsevite PbPd3 cub., Pm3m IMA 1966-006

The Auricupride group was established by Mitchell et al., 2017, Min. Mag. 81, 411-461, as a member of the Perovskite supergroup. Auricupride itself (and the questionable Cuproauride) doesnt belong from a chemical point to the "1.AC. Intermetallic alloys with Fe, Co, Ni, Platinum group elements (PGE)", but as all other members fit here and to keep the group as once, it was placed here.
Isostructural is the silicide Carletonmooreite, Ni3Si, Pm3m (see in 1.BD.)


 
1.AC.020. Niggliite group
 
Niggliite PtSn hex., P63/mmc G
Kufahrite PtPb hex., P63/mmc IMA 2020-045
Sorosite Cu1+x(Sn,Sb)     x < 0.2 hex., P63/mmc IMA 1994-047
Yuanjiangite AuSn hex., P63/mmc IMA 1993-028

The minerals belong to the Nickeline structure type. From a chemical point, Sorosite and Yuanjiangite doesnt belong to "1.AC. Intermetallic alloys with Fe, Co, Ni, Platinum group elements (PGE)", but were placed here to have all Nickeline type structures in one group.


 
1.AC.025. Hongshiite
 
Hongshiite PtCu trig. FOTO A


 
1.AC.030. Bortnikovite
 
Bortnikovite Pd4Cu3Zn tetr., P4/mmm (?) IMA 2006-027


 
1.AC.035. Taimyrite group
 
Taimyrite (Pd,Pt)9Cu3Sn4 orth. A, Rn
Tatyanaite (Pt,Pd)9Cu3Sn4 orth. IMA 1995-049

Taimyrite: originally described as Taimyrite-I, renamed.


 
1.AC.040. Cabriite
 
Cabriite Pd2CuSn orth., Pmmm IMA 1981-057


 
1.AC.045. Stannopalladinite
 
Stannopalladinite (Pd,Cu)3Sn orth. FOTO A

Stannopalladinite: originally assumed to be Pd3Sn2, hex., P63/mmc, and the Sn analogue of Plumbopalladinite. Re-examination showed that the mineral is (Pd,Cu)3Sn, orth., space group unknown. The crystal structure could not be determined and the role of Cu is unknown (Kasatkin et al., 2023, Min. Mag. 87, 773-782).


 
1.AC.050. Plumbopalladinite
 
Plumbopalladinite Pd3Pb2 hex., P63/mmc FOTO IMA 1970-020


 
1.AC.055. Norilskite
 
Norilskite (Pd,Ag)2-XPb   (X = 0.08 - 0.11) trig., P3121 IMA 2015-008


 
1.AC.060. Paolovite
 
Paolovite Pd2Sn orth., Pbnm FOTO IMA 1972-025


 
1.AC.065. Sluzhenikinite
 
Sluzhenikinite Pd15(Sb7-xSnx) with x ca. 3 - 4 mon., P21/m IMA 2020-089


 
1.AC.070. Damiaoite
 
Damiaoite PtIn2 cub., Fm3m IMA 1995-041


 
1.AC.075. Orthocuproplatinum
 
Orthocuproplatinum Pt3Cu orth., Cmmm IMA 2018-124


 
1.AC.080. Nielsenite
 
Nielsenite PdCu3 tetr., P4mm IMA 2004-046


 
1.AC.085. Kitagohaite
 
Kitagohaite Pt7Cu cub., Fm3m IMA 2013-114


 
1.AC.090. Palladothallite
 
Palladothallite Pd3Tl tetr., I4/mmm IMA 2019-009a

ZrAl3 structure type.


 
1.AC.095. Jedwabite
 
Jedwabite Fe7(Ta,Nb)3 hex. IMA 1995-043



 
 
1.AD. Intermetallic alloys with Cu, Ag, Au
 
1.AD.005. Cupalite
 
Cupalite CuAl orth. IMA 1983-084


 
1.AD.010. Khatyrkite group
 
Khatyrkite CuAl2 tetr., I4/mcm IMA 1983-085
Anyuiite AuPb2 tetr., I4/mcm IMA 1987-053


 
1.AD.015. Danbaite
 
Danbaite CuZn2 cub. IMA 1981-041

The composition of Danbaite falls within the field of γ-brass (cub., I43m, a = 8.878 Å), but for the mineral different cell parameters are given. Indexing of the cubic cell is very unusual and not very likely. Possibly, the mineral is identical to γ-brass and the additional lines in the powder difraction pattern are from impurities.


 
1.AD.020. Shosanbetsuite
 
Shosanbetsuite Ag3Sn orth., Pmmn IMA 2018-162


 
1.AD.025. Rumoiite
 
Rumoiite AuSn2 orth., Pbca IMA 2018-161


 
1.AD.030. Hunchunite
 
Hunchunite Au2Pb cub., Fd3m FOTO IMA 1991-033


 
1.AD.035. Novodneprite
 
Novodneprite AuPb3 tetr., I42m IMA 2002-032a



 
 
1.AE. Intermetallic alloys with Hg (Amalgam)
 
1.AE.005. Kolymite
 
Kolymite Cu7Hg6 cub. IMA 1979-046


 
1.AE.010. Belendorffite
 
Belendorffite Cu7Hg6 trig., R3m FOTO IMA 1989-024


 
1.AE.015. Eugenite
 
Eugenite Ag11Hg2 cub., I43m IMA 1981-037


 
1.AE.020. Luanheite
 
Luanheite Ag3Hg hex. IMA 1983-083


 
1.AD.025. Paraschachnerite
 
Paraschachnerite Ag1.2Hg0.8 orth. IMA 1971-056

Paraschachnerite might be identical to Schachnerite (1.AA.025.), the powder diffraction pattern can be indexed with a hexagonal cell (Cipriani et al., 1993, Eur. J. Mineral. 5, 903-914). Needs further study.


 
1.AE.030. Moschellandsbergite
 
Moschellandsbergite Ag2Hg3 cub., I23 FOTO G


 
1.AE.035. Aurihydrargyrumite
 
Aurihydrargyrumite Au6Hg5 hex., P63/mcm IMA 2017-003


 
1.AE.040. Leadamalgam
 
Leadamalgam  /  Bleiamalgam Pb0.7Hg0.3 tetr., I4/mmm FOTO IMA 1981-042






 
 

G = Grandfathered minerals: original description preceded the establishment of the CNMNC in 1959, and generally regarded as a valid species
A or IMA No. = Minerals approved by the CNMNC
Rd = Redefinition of the mineral approved by the CNMNC
Rn = Renamed with approval by the CNMNC
Q = Questionable mineral



Classification principles:
Re-arranged compared to Strunz 9. The discovery of several new minerals with unusual chemistry made the classification based in first instance on the chemistry in Strunz 9 more difficult and equivocal. A classification based on the crystal structure. A classification based primarily on crystal structure proved impractical because of the large number of different structures. Therefore, a classification based on structural and chemical principles was used. The sub-class 1.A. Metals and intermetallic alloys is now divided into 1.AA. Metals (including structures stabilized by other atoms), with large groups of simple cubic and hexagonal structures, 1.AB. Intermetallic alloys with Al, 1.AC. Intermetallic alloys with Fe, Co, Ni and Platinum Group Elements, including groups with CsCl, Perovskite and Nickeline structure types, 1.AD. Intermetallic alloys with Cu, Ag, Au, 1.AE. Intermetallic alloys with Hg (Amalgam). A few compromises were necessary to keep minerals with different chemistry in one structural group.

Further classification:
1.AA. Metals: Single element minerals and structures (polytypes) stabilized by other atoms. Simple cubic structures Fm3m (cubic close-packed) and Im3m; tetragonal structures; simple hexagonal structures P63/mmc (hexagonal close-packed); liquid metal; questionable metals.
1.AB. Intermetallic alloys with Al: "Classical" alloys with Al; Quasicrystals with Al.
1.AC. Intermetallic alloys with Fe, Co, Ni and Platinum Group Elements: CsCl structure type; Perovskite structure type (site vacant Perovskite); Nickeline structure type; other structures. A few minerals which would fit from a chemical point to other orders are placed here to keep structural groups intact.
1.AD. Intermetallic alloys with Cu, Ag, Au:
1.AE. Intermetallic alloys with Hg (Amalgam): Cu amalgams, Ag amalgams, Au amalgams, Pb amalgams.


To distinguish from classical Strunz numbering, on hierarchical "group" level, a numbering with 3 digits is used, like "1.AA.005. Copper group", instead of 2 digits (like "1.AA.05.") in the Strunz system.


© Thomas Witzke (2023)


HOME
FOTO ATLAS
SYSTEMATIK