HOME
FOTO ATLAS
SYSTEMATIK


MINERAL CLASSIFICATION / SYSTEMATIK der MINERALE

           based on E.H. Nickel & M.C. Nichols (2009), H. Strunz & E.H. Nickel (2001),
           revised by Thomas Witzke (2023)



4. OXIDES, HYDROXIDES
(Oxides, Hydroxides, V[5,6]-Vanadates, Arsenites, Antimonites, Bismutites, Sulfites, Selenites, Tellurites, Iodates)


4.K: Sulfites, Selenites, Tellurites (with Te4+), Tellurates (with Te6+)


4.KA. Sulfites
 
4.KA.005. Scotlandite
 
Scotlandite Pb(SO3) mon., P21/m IMA 1982-001


 
4.KA.010. Gravegliaite group
 
Gravegliaite Mn(SO3)ˇ3H2O orth., Pnma FOTO IMA 1990-020
Fleisstalite Fe(SO3)·3H2O orth., Pnma IMA 2016-038


 
4.KA.015. Albertiniite group
 
Mikenewite Mn(SO3)·3H2O mon., P21/n IMA 2022-102
Albertiniite Fe(SO3)·3H2O mon., P21/n IMA 2015-004


 
4.KA.020. Hannebachite
 
Hannebachite Ca(SO3)·0.5H2O orth., Pbna FOTO IMA 1983-056


 
4.KA.025. Kollerite
 
Kollerite (NH4)Fe3+(SO3)2(OH)·H2O orth., Cmcm IMA 2018-131


 
4.KA.030. Orschallite
 
Orschallite Ca3(SO3)2(SO4)·12H2O trig., R3c IMA 1990-041



 
 
4.KB. Selenites without Additional Anions, without H2O
 
4.KB.005. Zincomenite
 
Zincomenite Zn(SeO3) orth., Pbca IMA 2014-014


 
4.KB.010. Molybdomenite
 
Molybdomenite Pb(SeO3) mon., P21/m G


 
4.KB.015. Paramolybdomenite
 
Paramolybdomenite Pb(SeO3) mon., P21/c IMA 2023-025



 
 
4.KC. Selenites with Additional Anions, without H2O
 
4.KC.005. Sofiite
 
Sofiite Zn2(SeO3)Cl2 orth., Pccn IMA 1987-028


 
4.KC.010. Georgbokiite group
 
Georgbokiite Cu5O2(SeO3)2Cl2 mon., P21/c IMA 1996-015
Parageorgbokiite Cu5O2(SeO3)2Cl2 mon., P21/c IMA 2006-001


 
4.KC.015. Chloromenite
 
Chloromenite Cu9O2(SeO3)4Cl6 mon., I2/m IMA 1996-048


 
4.KC.020. Nicksobolevite
 
Nicksobolevite Cu7O2(SeO3)2Cl6 mon., P21/c IMA 2012-097


 
4.KC.025. Ilinskite
 
Ilinskite NaCu5O2(SeO3)2Cl3 orth., Pbnm FOTO IMA 1996-027


 
4.KC.030. Burnsite
 
Burnsite KCdCu7O2(SeO3)2Cl9 hex., P63/mmc IMA 2000-050


 
4.KC.035. Allochalcoselite
 
Allochalcoselite Cu1+Cu2+5PbO2(SeO3)2Cl5 mon., C2/m IMA 2004-025


 
4.KC.040. Sarrabusite
 
Sarrabusite Pb5Cu(SeO3)4Cl4 mon., C2/c IMA 1997-046a


 
4.KC.045. Prewittite
 
Prewittite KPb1.5ZnCu6O2(SeO3)2Cl10 orth., Pnnm IMA 2002-041


 
4.KC.050. Francisite
 
Francisite Cu3BiO2(SeO3)2Cl orth., Pmmn FOTO IMA 1989-028


 
4.KC.055. Plumboselite
 
Plumboselite Pb3O2(SeO3) orth., Cmc21 IMA 2010-028


 
4.KC.060. Guangyuanite
 
Guangyuanite Pb3(SeO3)(OH)Cl3 orth., Pnma IMA 2022-124


 
4.KC.065. Derriksite
 
Derriksite Cu4(UO2)(SeO3)2(OH)6 orth., Pn21m IMA 1971-033



 
 
4.KD. Selenites without Additional Anions, with H2O
 
4.KD.005. Alfredopetrovite
 
Alfredopetrovite Al2(SeO3)3·6H2O hex., P62c IMA 2015-026


 
4.KD.010. Mandarinoite group
 
Bernardevansite Al2(SeO3)3·6H2O mon., P21/c IMA 2022-057
Mandarinoite Fe2(SeO3)3·6H2O mon., P21/c FOTO IMA 1977-049
Telluromandarinoite Fe2(TeO3)3·6H2O mon., P21/c IMA 2011-013


 
4.KD.015. Chalcomenite
 
Chalcomenite Cu(SeO3)·2H2O orth. P212121 FOTO G
Teineite CuTeO3·2H2O orth., P212121 FOTO G


 
4.KD.020. Cobaltomenite
 
Cobaltomenite Co(SeO3)·2H2O mon., P21/n FOTO G
Ahlfeldite Ni(SeO3)·2H2O mon., P21/n G
Clinochalcomenite Cu(SeO3)·2H2O mon., P21/n -


 
4.KD.025. Nestolaite
 
Nestolaite Ca(SeO3)·H2O mon, P21/c IMA 2013-074



 
 
4.KE. Selenites with Additional Anions, with H2O
 
4.KE.005. Orlandiite
 
Orlandiite Pb3(SeO3)Cl4·H2O tric., P1 FOTO IMA 1998-038


 
4.KE.010. Favreauite
 
Favreauite PbBiCu6O4(SeO3)4(OH)·H2O tetr., P4/n IMA 2014-013


 
4.KE.015. Haynesite
 
Haynesite (UO2)3(SeO3)2(OH)2·5H2O orth., Pnc2 or Pncm FOTO IMA 1990-023


 
4.KE.020. Marthozite
 
Marthozite Cu(UO2)3(SeO3)2O2·8H2O orth., Pnma or Pn21a IMA 1968-016


 
4.KE.025. Piretite
 
Piretite Ca(UO2)3(SeO3)2(OH)4·H2O orth., Pmn21 or Pmnm IMA 1996-002


 
4.KE.030. Guilleminite
 
Guilleminite Ba(UO2)3(SeO3)2O2·3H2O orth., P21nm FOTO IMA 1964-031


 
4.KE.035. Borzęckiite
 
Borzęckiite Pb(UO2)3(SeO3)2O2·3H2O orth., P21nm IMA 2018-146a


 
4.KE.040. Demesmaekerite
 
Demesmaekerite Pb2Cu5(UO2)2(SeO3)6(OH)6·2H2O tric., P1 FOTO IMA 1965-019


 
4.KE.045. Larisaite
 
Larisaite Na(H3O)(UO2)3(SeO3)2O2·4H2O mon., Pm IMA 2002-061


 
4.KE.050. Petermegawite
 
Petermegawite Al6(SeO3)3[SiO3OH](OH)9·10H2O orth., Cmc21 IMA 2021-079



 
 
4.KF. Neso-Tellurites with (Te4+On)
 
4.KF.005. Plumbotellurite
 
Plumbotellurite PbTeO3 mon., C2/c A

Plumbotellurite, originally described as orthorhombic, is identical with α-Pb2+Te4+O3, monoclinic (Missen et al., 2019). Complex framework of PbO4-6 polyhedra and TeO3 groups, with tunnels which act as micelles to contain the lone pair electrons (Christy et al., 2016).


 
4.KF.010. Matthiasweilite
 
Matthiasweilite PbTeO3 tric., P1 IMA 2021-069

Matthiasweilite is identical with γ-Pb2+Te4+O3.


 
4.KF.015. Smirnite
 
Smirnite Bi2[TeO3]O2 orth., Cm2a IMA 1982-104

With monomeric Te4+O3 and no larger structural unit. A defect fluorite superstructure (Christy et al., 2016).


 
4.KF.020. Magnolite
 
Magnolite Hg1+2Te4+O3 orth., Pbm2 G

With monomeric Te4+O3 as part of a larger structural unit that is a chain. (Hg2)2+ dimers and TeO3 groups form continuous chains -O-Te-O-Hg-Hg-O-Te-O- zigzagging in the (001) plane, with Te atoms at the apices of the bends (Christy et al., 2016).


 
4.KF.025. Millsite
 
Millsite CuTeO3·2H2O mon, P21/c IMA 2015-086

With Cu2O6(H2O)6 dimers, decorated each with four TeO3 groups connecting adjacent dimers and defining (100) heteropolyhedral sheets (Rumsey et al., 2018).


 
4.KF.030. Juabite
 
Juabite CaCu10(TeO3)4(AsO4)4(OH)2·4H2O tric. IMA 1996-001

With monomeric Te4+O3 as part of a larger structural unit that is a layer (Christy et al., 2016).


 
4.KF.035. Rodalquilarite
 
Rodalquilarite Fe2(TeO2OH)3(TeO3)Cl tric., P1 FOTO IMA 1967-040

With monomeric Te4+O3 as part of a larger structural unit that is a layer. With Fe2Te2 'double triangles', these share FeO6 edges to form zigzag chains, which are cross-linked via a second type of TeX3 into layers parallel (001) (Christy et al., 2016).


 
4.KF.040. Eztlite
 
Eztlite Pb2+2Fe3+3(Te4+O3)3(SO4)O2Cl mon., Cm FOTO IMA 1980-072, Rd

Originally described as Pb2Fe6(Te4+O3)3(Te6+O6)(OH)10ˇ8H2O with mixed valencies Te4+ and Te6+. Redefined (IMA 18-A) as containing only Te4+ and sulfate. The crystal structure of eztlite contains mitridatite-like layers, with a repeating triangular nonameric [Fe3+9O36]45- arrangement formed by nine edge-sharing Fe3+O6 octahedra, decorated by four trigonal pyramidal Te4+O3 groups, compared with PO4 or AsO4 tetrahedra in mitridatite-type minerals. The interlayer contains Pb2+, sulphate tetrahedra and Cl- (Missen et al., 2018).


 
4.KF.045. Bodieite
 
Bodieite Bi2(TeO3)2(SO4) mon., I2/a IMA 2017-117


 
4.KF.050. Adanite
 
Adanite Pb2(TeO3)(SO4) mon., P21/n IMA 2019-088


 
4.KF.055. Tamboite
 
Tamboite Fe3+3(OH)(H2O)2(SO4)(Te4+O3)3(Te4+O(OH)2)(H2O)3 mon., P22/c IMA 2016-059
Metatamboite Fe3+3(OH)(H2O)2(SO4)(Te4+O3)3(Te4+O(OH)2)(H2O) mon., P22/c IMA 2016-060


 
4.KF.060. Choloalite
 
Choloalite (Pb,Ca)3[(Cu2.67Sb0.33)(TeO3)6]Cl cub., P4132 IMA 1980-019

With monomeric Te4+O3 as part of a larger structural unit that is a framework. CuO3 squares share all corners with Te, and TeO3 groups share two corners with Cu, to form a framework with a large unit cell and chiral symmetry. The chloride anion is shared by three (Cu,Sb) atoms as a fifth ligand, while Pb is located in large interstices (Christy et al., 2016).


 
4.KF.065. Balyakinite
 
Balyakinite CuTeO3 orth., Pmcn IMA 1980-001

With monomeric Te4+O3 as part of a larger structural unit that is a framework. Edge-sharing pairs CuO5 square pyramids link corners to form zigzag chains, which are cross-linked into a rather open framework by TeO3 groups (Christy et al., 2016).


 
4.KF.070. Rudolfhermannite
 
Rudolfhermannite Fe3+2(TeO3)3·H2O hex., P63/m IMA 2021-099

With monomeric Te4+O3 as part of a larger structural unit that is a framework. Face-sharing octahedra Fe2O9 share corners with pyramidal TeO3 groups. Rudolfhermannite is structurally related to the Zemannite group.


 
4.KF.075. Zemannite group
 
Kinichilite Mg0.5[MnFe(TeO3)3]·4.5H2O hex., P63/m IMA 1979-031
Ilirneyite Mg0.5[ZnMn3+(TeO3)3]·4.5H2O hex., P63/m IMA 2015-046
Zemannite Mg0.5[ZnFe(TeO3)3]·4.5H2O hex., P63/m IMA 1968-009
Keystoneite H0.8Mg0.8[(Ni,Fe,Mn)2(TeO3)3]·5H2O hex., P63/m FOTO IMA 1987-049
Wortupaite Mg[Ni2+2(TeO3)3]·3H2O hex., P63/m IMA 2022-107

With monomeric Te4+O3 as part of a larger structural unit that is a framework. With large hexagonal channels parallel c hosting Mg and water, and zeolitic ion-exchange properties (Christy et al., 2016).


 
4.KF.080. Tomiolloite
 
Tomiolloite Al12(TeO3)5(SO3,SO4)(OH)24 hex., P63/m IMA 2021-019


 
4.KF.085. Emmonsite
 
Emmonsite Fe2(H2O)2(TeO3)3 tric., P1 G

With monomeric Te4+O3 as part of a larger structural unit that is a framework. With dimers Fe2O8(H2O)2, connected through TeO3 pyramids, which define the walls of nearly-square channels, which accommodate the Te lone pairs. The structure shows some relation to Minium and Schafarzikite (Christy et al., 2016).


 
4.KF.090. Sonoraite
 
Sonoraite Fe2(OH)2(H2O)(Te4+O3)2·H2O mon., P21/c IMA 1968-001

With monomeric Te4+O3 as part of a larger structural unit that is a framework. Complex framework of chains of alternating edge-sharing octahedral dimers Fe2O8(OH)2 and Fe2O4(OH)5(H2O), linked by TeO3 groups. The non-framework water molecule is loosely held in a structural cage between TeO3 groups (Christy et al., 2016).


 
4.KF.095. Northstarite
 
Northstarite Pb6(Te4+O3)5(S6+O3S2-) hex., P63/m IMA 2019-031

Framework of monomeric TeO3 trigonal pyramids and Pb in 9-fold coordination, with channels along the c axis. The thiosulfate groups at the centers of the channels are only weakly bonded to the framework (Kampf et al., 2020).


 
4.KF.100. Ozernovskite
 
Ozernovskite Fe3+4(Te4+O4)(Te3+O4)4·7H2O mon., C2/c IMA 2021-059

Ozernovskite contains (TeO3) trigonal pyramids and (TeO4) square pyramids.



 
 
4.KG. Soro-Tellurites, with (Te4+2O6) dimers or other groups
 
4.KG.005. Moctezumite
 
Moctezumite Pb(UO2)(TeO3)2 mon., P21/c FOTO IMA 1965-004

With dimers [Te4+2O6]4-, formed of corner-sharing TeO3 and TeO4 groups (Christy et al., 2016).


 
4.KG.010. Poughite
 
Poughite Fe2(H2O)2(SO4)(Te4+2O6)·H2O orth., P21nb FOTO IMA 1966-048

With clusters [Fe2O6(H2O)2(SO4)]8-, linked together in groups of four through Te2O6 dimers to make layers parallel (020), with the remaining H2O molecule in the interlayer (Christy et al., 2016).


 
4.KG.015. Mroseite
 
Mroseite CaTeO2(CO3) orth., Pbca FOTO IMA 1974-032

The structure can be alternatively described as two weakly bonding Ca2+ cations, two carbonate groups and a neutral [Te2O4] residual complex that consists of a pair of edge-sharing TeO3 pyramids, or, as one oxygen atom of each carbonate triangle also links to a Te via a bond that is strong enough to fall within the bondvalence threshold, with edge-sharing dimers [Te4+2O6]4- as part of carbonatotellurite clusters [Te2C2O10]4- (Christy et al., 2016).


 
4.KG.020. Fairbankite
 
Fairbankite Pb12(TeO3)11(SO4) tric., P1 FOTO A

Fairbankite was originally described as PbTeO3. According to a re-investigation, the mineral has the composition Pb12(TeO3)11(SO4). The structure can be described as a 3D framework of Pb2+On polyhedra, Te4+On polyhedra, and SO4 tetrahedra. The stereoactive lone pairs of the Pb2+ and Te4+ cations are oriented into void space within the structure. Fairbankite contains two mixed sites statistically occupied by Te4+ and S6+. Six of the 10 fully occupied Te sites have Te4+ in trigonal-pyramidal environment (TeO3), while four have Te4+ at the center of highly distorted Te4+O3 disphenoids. The disphenoids allow for the creation of two dimeric (Te2O6)4- units of corner-sharing TeO3 and TeO4 groups, and of a trimeric, non-cyclic (Te3O9)6- unit of two disphenoids and a TeO3 group (Missen et al., 2021).



 
 
4.KH. Ino-Tellurites
 
4.KH.005. Rajite
 
Rajite CuTe2O5 mon., P21/c FOTO IMA 1978-039

With zweier chains [Te2O5]n of alternating corner-sharing TeO3 and TeO4 groups (Christy et al., 2016).


 
4.KH.010. Schmitterite
 
Schmitterite (UO2)(TeO3) orth., Pca21 IMA 1967-045

With chains [Te2O6]n of corner-sharing TeO4 groups (Christy et al., 2016).


 
4.KH.015. Chekhovichite
 
Chekhovichite Bi4(Te4O10)(TeO4)4 mon., P21/n IMA 1986-039

With zigzagging vierer chains [Te4O10]n of alternating corner-sharing TeO3 and TeO4 groups, BiO7-8 polyhedra and monomeric TeO3 groups (Christy et al., 2016).


 
4.KH.020. Denningite
 
Denningite CaMn2+Te4+4O10 tetr., P42/n FOTO A

With vierer chains [Te4O10]n of alternating corner- and edge-sharing TeO4 groups (Christy et al., 2016).


 
4.KH.025. Spiroffite group
 
Spiroffite Mn2Te3O8 mon., C2/c FOTO A
Zincospiroffite Zn2Te3O8 mon., C2/c IMA 2002-047

With sechser chains [Te6O16]n of pairs of edge-sharing TeO4 groups alternate with a TeO4 polyhedron that shares only corners with the two neigbouring pairs (Christy et al., 2016).



 
 
4.KJ. Phyllo-Tellurites
 
4.KJ.005. Mackayite
 
Mackayite Fe3Te2O5OH tetr., I41/acd FOTO G

[Te4O10]n layers with 4- and 8-membered rings, similar to the 'apophyllite' type, but with alternating individual 'upward' and 'downward' pointing polyhedra (Christy et al., 2016).



 
 
4.KK. Tecto-Tellurites
 
4.KK.005. Cliffordite
 
Cliffordite (UO2)(Te4+3O7) cub., Pa3 FOTO IMA 1966-046


 
4.KK.010. Winstanleyite group
 
Winstanleyite TiTe4+3O8 cub., Ia3 FOTO IMA 1979-001
Walfordite (Fe3+,Te6+,Ti4+,Mg)Te4+3O8 cub., Ia3 IMA 1996-003



 
 
4.KL. Tellurites, not classified, unknown structures
 
4.KL.005. Graemite
 
Graemite CuTeO3·H2O orth., Pmc21 FOTO IMA 1974-022


 
4.KL.010. Cesbronite
 
Cesbronite Cu5(TeO3)2(OH)6·2H2O orth., Pbcn IMA 1974-006


 
4.KL.015. Blakeite
 
Blakeite Fe-Te-O (?) Q



 
 
4.KM. Neso-Tellurates, monomeric (Te6+X6) octahedra
 
4.KM.005. Dagenaisite
 
Dagenaisite Zn3(TeO6) mon., C2/c IMA 2017-017


 
4.KM.010. Amgaite
 
Amgaite Tl3+2(TeO6) trig., P321 IMA 2021-104


 
4.KM.015. Pingguite
 
Pingguite Bi6O3(Te6+O6)2 orth., Pnma IMA 1993-019

Originally described as Bi6Te4+2O13, new sum formula Bi6Te6+2O15. Pingguite contains Te6+, not Te4+. Network of BiO5 irregular square pyramids, with isolated TeO6 octahedra (Nénert et al., 2020, Physics and Chemistry of Minerals 47).


 
4.KM.020. Raisaite
 
Raisaite CuMg[Te6+O4(OH)2]·6H2O mon., C2/c IMA 2014-046

Monomeric Te6+X6 as part of a larger structural unit that is an infinite chain. With zig-zag chains built by alternating edge-sharing TeO4(OH)2 and CuO4(H2O)2 octahedra (Christy et al., 2016).


 
4.KM.025. Pararaisaite
 
Pararaisaite CuMg[Te6+O4(OH)2]·6H2O mon., P21/c IMA 2017-110


 
4.KM.030. Hagstromite
 
Hagstromite Pb8Cu(TeO6)2(CO3)Cl4 orth., Ibam IMA 2019-093


 
4.KM.035. Frankhawthorneite
 
Frankhawthorneite Cu2Te6+O4(OH)2 mon., P21/n IMA 1993-047

Monomeric Te6+X6 as part of a larger structural unit that is an infinite layer (Christy et al., 2016). With edge-sharing [Te6+O4(OH)2]- and [CuO4(OH)2]-octahedra.


 
4.KM.040. Paratimroseite
 
Paratimroseite Pb2Cu4(Te6+O6)2(H2O)2 orth., P212121 IMA 2009-065

Stair-step-like layers built of TeO6 and CuO6 octahedra.


 
4.KM.045. Flaggite
 
Flaggite Pb4Cu4Te6+2O11(OH)2(SO4)·H2O tric., P1 IMA 2021-044

Stair-step-like layers built of TeO6 and CuO6 octahedra.


 
4.KM.050. Bairdite
 
Bairdite Pb2Cu4Te6+2O10(OH)2(SO4)·H2O mon., P21/b IMA 2012-061

Stair-step-like double-layers built of TeO6 and CuO6 octahedra.


 
4.KM.055. Khinite
 
Khinite Cu3PbTeO4(OH)6 orth., Fddd IMA 1978-035

Khinite polytypes: Khinite-4O (orth., Fddd), Khinite-3T (trig., P32, originally described as parakhinite, IMA 1978-036, redefined 2009 as a polytype of khinite)


 
4.KM.060. Agaite
 
Agaite CuPb3TeO5(OH)2(CO3) orth., Pca21 IMA 2011-115


 
4.KM.065. Backite group
 
Backite Pb2AlTe6+O6Cl trig., P312 IMA 2013-113
Müllerite Pb2FeTe6+O6Cl trig., P312 IMA 2019-060


 
4.KM.070. Leisingite
 
Leisingite (Cu,Mg,Zn)2(Mg,Fe)TeO6·6H2O trig., P31m FOTO IMA 1995-011


 
4.KM.075. Mojaveite
 
Mojaveite Cu6(Te6+O4(OH)2)(OH)7Cl trig., P31m IMA 2013-120

Mojaveite is closely related to Bluebellite, Cu6(I5+O3(OH)3)(OH)7Cl, the structures are based on stackings of brucite-like Cu6MX14 layers, with M = (I or Te) and X = (O, OH and Cl)


 
4.KM.080. Fuettererite
 
Fuettererite Pb3Cu6Te6+O6(OH)7Cl5 trig., R3 IMA 2011-111

Edge-sharing sheets of CuO5Cl and TeO6 octahedra. The sheets are closely related to the layers in spangolite, but are linked together in fuettererite to form double sheets, alternating with thick double layers of PbO2Cl6 polyhedra.


 
4.KM.085. Markcooperite
 
Markcooperite Pb2(UO2)Te6+O6 mon., P21/b IMA 2009-045


 
4.KM.090. Jensenite
 
Jensenite Cu3TeO6·2H2O mon., P21/n FOTO IMA 1994-043

Monomeric Te6+X6 as part of a larger structural unit that is framework (Christy et al., 2016).


 
4.KM.095. Timroseite
 
Timroseite Cu5Pb2(TeO6)2(OH)2 mon., Pmn21 IMA 2009-064


 
4.KM.100. Quetzalcoatlite
 
Quetzalcoatlite Cu3Zn6Te2O12(OH)6ˇ(Ag,Pb,□)Cl trig., P31m FOTO IMA 1973-010



 
 
4.KN. Soro-Tellurates, finite polymers (Te6+mXn)
 
4.KN.005. Thorneite
 
Thorneite Pb6(Te6+2O10)(CO3)Cl2ˇH2O mon., C2/c IMA 2009-023

With edge-sharing tellurate octahedra, forming dimers (Te6+2O10)8-.


 
4.KN.010. Eckhardite
 
Eckhardite (Ca,Pb)CuTe6+O5(H2O) mon., P25/n IMA 2012-085


 
4.KN.015. Andychristyite
 
Andychristyite PbCuTe6+O5(H2O) tric., P1 IMA 2015-024



 
 
4.KO. Ino-Tellurates, infinite polymers (Te6+mXn)
 
4.KO.005. Ottoite
 
Ottoite Pb2Te6+O5 mon., B2/b IMA 2009-063

With chains of corner-sharing TeO6-octahedra.


 
4.KO.010. Housleyite
 
Housleyite CuPb6Te4O18(OH)2 mon., P21/n IMA 2009-024

With chains of corner-sharing TeO6-octahedra.



 
 
4.KP. With mixed valencies, Te4+ and Te6+
 
4.KP.005. Carlfrieseite
 
Carlfrieseite CaTe6+Te4+2O8 mon., C2/c IMA 1973-013


 
4.KP.010. Tlapallite
 
Tlapallite H6(Ca,Pb)2(Cu,Zn)3O2(SO4)(TeO4)(TeO3)4 mon. FOTO IMA 1977-044


 
4.KP.015. Tlalocite
 
Tlalocite Cu10Zn6(Te4+O3)(Te6+O4)2Cl(OH)25·27H2O orth. FOTO IMA 1974-047


 
4.KP.020. Yecoraite
 
Yecoraite Fe3+3Bi5O9(Te4+O3)(Te6+O4)2·9H2O IMA 1983-062


 
4.KP.025. Tombstoneite
 
Tombstoneite (Ca0.5Pb0.5)Pb3Cu6Te6+2O6(Te4+O3)6(Se4+O3)2(SO4)2·H2O trig., P321 IMA 2021-053



 
 
4.KQ. Unclassified tellurates, unknown structures
 
4.KQ.005. Kuranakhite
 
Kuranakhite PbMn4+Te6+O6 orth. FOTO IMA 1974-030


 
4.KQ.010. Cuzticite
 
Cuzticite Fe2Te6+O6·9H2O hex. IMA 1980-071


 
4.KQ.015. Brumadoite
 
Brumadoite Cu3Te6+O4(OH)4·5H2O mon., P21/m or P21 IMA 2008-028


 
4.KQ.020. Utahite
 
Utahite Cu5Zn3(Te6+O4)4(OH)8ˇ7H2O tric., P1 or P1 FOTO IMA 1995-039


 
7.DL.030. Xocolatlite
 
Xocolatlite Ca2Mn4+2Te6+2O12ˇH2O mon. IMA 2007-020


 
 

G = Grandfathered minerals: original description preceded the establishment of the CNMNC in 1959, and generally regarded as a valid species
A or IMA No. = Minerals approved by the CNMNC
Rd = Redefinition of the mineral approved by the CNMNC
Rn = Renamed with approval by the CNMNC
Q = Questionable mineral



Classification principles:
Subdivision of the Oxides etc. subclass "4.K: Sulfites, Selenites, Tellurites (with Te4+), Tellurates (with Te6+)" completely re-arranged compared to Strunz 9, especially Tellurites and Tellurates. New arrangement of Tellurites and Tellurates according to Christy et al. (2016) A review of the structural architecture of tellurium oxycompounds, Mineralogical Magazine 80, 415-545. Criteria are the valence state of Te (Te4+ or Te6+) and polymerization state of TemOn complexes. Subdivision into 4.KA. Sulfites; 4.KB. Selenites without Additional Anions, without H2O; 4.KC. Selenites with Additional Anions, without H2O; 4.KD. Selenites without Additional Anions, with H2O; 4.KE. Selenites with Additional Anions, with H2O; 4.KF. Neso-Tellurites with (Te4+On); 4.KG. Soro-Tellurites, with (Te4+2O6) dimers or other groups; 4.KH. Ino-Tellurites; 4.KJ. Phyllo-Tellurites; 4.KK. Tecto-Tellurites; 4.KL. Tellurites, not classified, unknown structures; 4.KM. Neso-Tellurates, monomeric (Te6+X6) octahedra; 4.KN. Soro-Tellurates, finite polymers (Te6+mXn); 4.KO. Ino-Tellurates, infinite polymers (Te6+mXn); 4.KP. With mixed valencies, Te4+ and Te6+; 4.KQ. Unclassified tellurates, unknown structures
Further classification:
4.KA. Sulfites.: Sulfites without additional anions, without water; Sulfites without additional anions, with water; Sulfites with additional anions, with water.
4.KB. Selenites without Additional Anions, without H2O.: With medium-sized cations; with large cations.
4.KC. Selenites with Additional Anions, without H2O.: With medium-sized cations; with medium-sized and large cations; with large cations; with uranyl groups.
4.KD. Selenites without Additional Anions, with H2O.: With medium-sized cations; with large cations.
4.KE. Selenites with Additional Anions, with H2O.: With large cations; Ca-, Ba-, Pb-uranyl selenites; uranyl selenites with silicate.
4.KF. Neso-Tellurites with (Te4+On).: With isolated monomeric TeO3 groups; with monomeric Te4+O3 as part of a larger structural unit that is a chain; with monomeric Te4+O3 as part of a larger structural unit that is a layer; with monomeric Te4+O3 as part of a larger structural unit that is a framework.
4.KG. Soro-Tellurites, with (Te4+2O6) dimers or other groups.: With dimers (Te4+2O6); with trimers (Te4+3O9).
4.KH. Ino-Tellurites.: With zweier chains [Te2O5]n; with vierer chains [Te4O10]n; with sechser chains [Te6O16]n.
4.KJ. Phyllo-Tellurites.: Only one mineral.
4.KK. Tecto-Tellurites.: With Te4+3O7 framework; with Te4+3O8 framework.
4.KL. Tellurites, not classified, unknown structures.: ...
4.KM. Neso-Tellurates, monomeric (Te6+X6) octahedra.: With isolated monomeric Te6+O6; with monomeric Te6+X6 as part of a larger structural unit that is an infinite chain; monomeric Te6+X6 as part of a larger structural unit that is a layer; monomeric Te6+X6 as part of a larger structural unit that is framework chain.
4.KN. Soro-Tellurates, finite polymers (Te6+mXn).: With dimers (Te6+2O10)8-.
4.KO. Ino-Tellurates, infinite polymers (Te6+mXn).: Only two minerals.
4.KP. With mixed valencies, Te4+ and Te6+.: Only two minerals.
4.KQ. Unclassified tellurates, unknown structures.: Only two minerals.


To distinguish from classical Strunz numbering, on hierarchical "group" level, a numbering with 3 digits is used, like "4.KA.005. Scotlandite", instead of 2 digits (like "4.KA.05.") in the Strunz system.


© Thomas Witzke (2023)


HOME
FOTO ATLAS
SYSTEMATIK