HOME
FOTO ATLAS
SYSTEMATIK


MINERAL CLASSIFICATION / SYSTEMATIK der MINERALE

           based on E.H. Nickel & M.C. Nichols (2009), H. Strunz & E.H. Nickel (2001),
           revised by Thomas Witzke (2023)



5. CARBONATES
(Carbonates, Nitrates)


5.C: Carbonates without additional anions, with water


5.CA. With cations only in tetrahedral coordination
 
no example known
 


 
5.CB. With cations in tetrahedral + other coordination
 
5.CB.005. Paulišite
 
Paulišite Ca2Zn(CO3)3·2H2O mon., Cc IMA 2023-031



 
 
5.CC. With cations only in octahedral coordination
 
5.CC.005. Nesquehonite
 
Nesquehonite Mg(CO3)·3H2O mon., P21/n FOTO G

Nesquehonite: infinite chains along [010], formed by corner-sharing MgO6 octahedra. Within the chains, CO3 groups link three MgO6 octahedra by two common corners and one edge, which causes strong distortions of the involved polyhedra. The chains are interconnected via hydrogen bonds only, each Mg atom is coordinated by two H2O ligands, and one free water molecule is situated between the chains (Giester et al., 2000, Mineralogy and Petrology 70, 153-163).


 
5.CC.010. Lansfordite
 
Lansfordite Mg(CO3)·5H2O mon., P21/a G


 
5.CC.015. Hellyerite
 
Hellyerite Ni(CO3)·6H2O mon., C2/c A


 
5.CC.020. Natron
 
Natron Na2(CO3)·10H2O mon., Cc A

Natron: pairs of edge-sharing Na(H2O)6 octahedra forming Na2(H2O)10 units, and CO3 molecules. These units are connected by hydrogen bonds. Carbonate groups show a certain disorder at room temperature (Libowitzky & Giester, 2003, Mineralogy and Petrology 77, 177-195).



 
 
5.CD. With cations in octahedral + other coordination
 
5.CD.005. Baylissite
 
Baylissite K2Mg(CO3)2·4H2O mon. IMA 1975-024

Baylissite: Mg in octahedral coordination, K in 7-fold coordination.


 
5.CD.010. Chalconatronite
 
Chalconatronite Na2Cu(CO3)2·3H2O mon., P21/n G

Chalconatronite: Na in octahedral coordination, Cu in 5-fold, square pyramidal coordination (Mosset et al., 1978, Z. Krist. 148, 165-177).


 
5.CD.015. Trona
 
Trona Na3(HCO3)(CO3)·2H2O mon., C2/c FOTO G

Trona: Na in octahedral and 6-fold irregular (septahedral) coordination, forming groups of one central octahedra and two septahedra by edge-sharing. The groups are connected via carbonate and hydrogen bonding (Bacon & Curry, 1956, Acta Cryst. 9, 82-85).


 
5.CD.020. Gaylussite
 
Gaylussite Na2Ca(CO3)2·5H2O mon., I2/a G

Gaylussite: Na in distorted octahedral coordination, Ca in 4-fold coordination with distances < 3 Å and 2 oxygen in larger distance (Dickens & Brown, 1967, Nat. Bureau of Standards Report 9921).


 
5.CD.025. Pirssonite
 
Pirssonite Na2Ca(CO3)2·2H2O orth., Fdd2 G

Pirssonite: Na in distorted octahedral coordination, Ca in 8-fold, square anti-prism coordination (Corazza & Sabelli, 1967, Acta Cryst. 23, 763-766).


 
5.CD.030. Shomiokite
 
Shomiokite-(Y) Na3Y(CO3)3·3H2O orth., Pbn21 IMA 1990-015

Shomiokite-(Y): Na in heavy distorted octahedral coordination, Y in 9-fold coordination (Rastsvetaeva et al., 1997, Eur. J. Min. 8, 1249-1256).


 
5.CD.035. Lecoqite
 
Lecoqite-(Y) Na3Y(CO3)3·6H2O hex., P63 IMA 2008-069

Lecoqite-(Y): Na in heavy distorted octahedral coordination, Y in 9-fold coordination (Pekov et al., 2010, Can. Min. 48, 95-104). Lecoqite-(Y) shows some structural relations to Shomiokite-(Y), both minerals contain similar sodium carbonate layers.



 
 
5.CE. With cations in other coordination
 
5.CE.005. Monohydrocalcite
 
Monohydrocalcite Ca(CO3)·H2O trig., P31 FOTO G

Monohydrocalcite: Ca in 8-fold coordination. CO3 groups show a disorder, pointing up or down the c axis. C-O distances of 1.251 and 1.273 Å and one extraordinary long distance of 1.367 Å indicate that hydrogen is bonded to it, forming a HCO3 anion. The formula can then be written as CaHCO3(OH) (Kohatsu & McCauley, 2019, Army Research Laboratory TR-8644).


 
5.CE.010. Ikaite
 
Ikaite Ca(CO3)·6H2O mon., C2/c IMA 1962-005

Ikaite: Ca in 8-fold coordination, 2 to oxygen from carbonate groups and 6 to oxygen from water (Lennie et al., 2004, Min. Mag. 68, 135-146).


 
5.CE.015. Yuchuanite-(Y)
 
Yuchuanite-(Y) Y2(CO3)3·H2O tri., P1 IMA 2022-120

Yuchuanite-(Y): Y in 8-fold coordination.


 
5.CE.020. Tengerite-(Y) (Tengerite family)
 
Tengerite-(Y) Y2(CO3)3·2-3H2O orth., Bb21m Rd

Tengerite-(Y): Y in 9-fold coordination. Sheet structure of YO9 polyhedra and planar CO3 groups. The layers are connected by other CO3 groups to a 3-dimensional network (Miyawaki et al. 1993, Am. Min. 78, 425-432).


 
5.CE.025. Lokkaite-(Y) group (Tengerite family)
 
     025 a. Kimuraite-(Y)
Kimuraite-(Y) CaY2(CO3)4·6H2O orth., I2mm IMA 1984-073
 
     025 b. Lokkaite-(Y)
Lokkaite-(Y) CaY4(CO3)7·9H2O orth., Cm2m IMA 1969-045
 
     025 c. Hizenite-(Y)
Hizenite-(Y) Ca2Y6(CO3)11·14H2O orth. IMA 2011-030

Kimuraite-(Y): Related to the Tengerite-(Y) structure. Tengerite-like corrugated layers of YO9 polyhedra and planar CO3 groups, alternating with a layers of Ca cations and water (Tahara et al., 2003, Abstr. Meeting Min. Soc. Japan).
Lokkaite-(Y): Related to the Tengerite-(Y) structure. A pair of Tengerite-like corrugated layers of YO9 polyhedra and planar CO3 groups, alternating with a layers of Ca cations and water (Tahara et al., 2003, Abstr. Meeting Min. Soc. Japan).
Hizenite-(Y): Alternating blocks of Lokkaite-(Y) and Kimuraite-(Y) structures in 1 : 1 ratio, stacked along c (Takai & Uehara, 2013, J. Min. Petr. Sci. 108, 161-165).


 
5.CE.030. Calkinsite
 
Calkinsite-(Ce) Ce2(CO3)3·4H2O orth., P21221 A

Calkinsite-(Ce): probably structurally closely related to the minerals of the Lanthanite group, with very similar a and c parameters, but smaller b parameter.


 
5.CE.035. Lanthanite group
 
Lanthanite-(La) La2(CO3)3·8H2O orth., Pbnb A
Lanthanite-(Ce) Ce2(CO3)3·8H2O orth., Pbnb FOTO IMA 1983-055
Lanthanite-(Nd) Nd2(CO3)3·8H2O orth., Pbnb IMA 1979-074

Lanthanite: REE in 10-fold coordination. The structure is composed of infinite sheets of REEO10-polyhedra and carbonate triangles, stacked perpendicular to c. The layers are connected through hydrogen bonding via interlayer water molecules (Morrison et al., 2013, Acta Cryst. E 69, i15-i16).


 
5.CE.040. Thermonatrite
 
Thermonatrite Na2(CO3)·H2O orth., Pca21 G

Thermomatrite: Na (1) in irregular 5 + 1 coordination (5 oxygen from carbonate groups, 1 oxygen from water in larger distance), Na (2) in irregular 7-fold coordination (Dickens et al., 1970, J. of Research of the Nat. Bureau of Standards 74A, 319-324).


 
5.CE.045. Adamsite
 
Adamsite-(Y) NaY(CO3)2·6H2O tric., P1 IMA 1999-020

Adamsite-(Y): Na in irregular coordination with 6 oxygen from water, Y in 9-fold coordination (7 oxygen from carbonate groups, 2 oxygen from water) (Grice et al., 2000, Can. Min. 38, 1457-1466).


 
5.CE.050. Mckelveyite group
 
Ewaldite BaCa(CO3)2·2.6H2O hex., P63mc (?) IMA 1969-013
Donnayite-(Y) NaCaSr3Y(CO3)6·3H2O tric., P1 FOTO IMA 1978-007
Mckelveyite-(Y) NaCaBa3Y(CO3)6·3H2O tric., P1 Rd
Mckelveyite-(Nd) NaCaBa3Nd(CO3)6·3H2O mon., Cc IMA 2023-017
Alicewilsonite-(YLa) Na2Sr2YLa(CO3)6·3H2O tric., P1 IMA 2021-047
Alicewilsonite-(YCe) Na2Sr2YCe(CO3)6·3H2O tric., P1 IMA 2020-055
Bainbridgeite-(YCe) Na2Ba2YCe(CO3)6·3H2O tric., P1 IMA 2020-065
Bainbridgeite-(NdCe) Na2Ba2NdCe(CO3)6·3H2O tric., P1 IMA 2023-018
Weloganite Na2Sr3Zr(CO3)6·3H2O tric., P1 FOTO IMA 1967-042

Donnayite-(Y): Na and Ca in irregular 6-fold coordination, Y in 9-fold coordination, Sr in 10-fold coordination (Lykova et al., 2023, Eur. J. Min. 35, 133-142).
Mckelveyite-(Y) polytypes: Mckelveyite-(Y)-1A (tric, P1), Mckelveyite-(Y)-2M (mon., Cc, originally accepted as a new mineral, IMA 2005-012a, but later withdrawn).


 
5.CE.055. Galgenbergite
 
Galgenbergite-(Ce) CaCe2(CO3)4·3H2O tric., P1 IMA 1997-036

Galgenbergite-(Ce): Ca in 8-fold, Ce in 10-fold coordination.


 
5.CE.060. Tuliokite
 
Tuliokite Na6BaTh(CO3)6·6H2O trig., R3 IMA 1988-041

Tuliokite: Na in 8-fold coordination, Ba and Th in 12-fold icosahedral coordination (Yamnova et al., 1990, Dokl. Akad. Nauk SSSR 310, 99-102).






 
 

G = Grandfathered minerals: original description preceded the establishment of the CNMNC in 1959, and generally regarded as a valid species
A or IMA No. = Minerals approved by the CNMNC
Rd = Redefinition of the mineral approved by the CNMNC
Rn = Renamed with approval by the CNMNC
Q = Questionable mineral



Classification principles:
Subdivision of the Carbonates subclass "5.C: Carbonates without additional anions, with water" completely re-arranged compared to the chemical classification in Strunz 9. The subdivision is based now on structural aspects, the coordination polyhedra, corresponding roughly to the cation size (from smaller to larger cations): 5.CA. With cations only in tetrahedral coordination; 4.CB. With cations in tetrahedral + other coordination; 5.CC. With cations only in octahedral coordination; 5.CD. With cations in octahedral + other coordination; 5.CE. With cations in other coordination.
Further classification:
5.CA. With cations only in tetrahedral coordination: No example known at time.
5.CB. With cations in tetrahedral + other coordination: Only one mineral.
5.CC. With cations only in octahedral coordination: Mainly medium-sized cations in octahedral coordination; large cations in octahedral coordination.
5.CD. With cations in octahedral + other coordination: Medium-sized cations in octahedral + other cations in other coordination sorted according to increasing coordination number; large cations in octahedral + other cations in other coordination.
5.CE. With cations in other coordination: Single coordination type, arranged with increasing coordination number; more than one coordination type, arranged with increasing coordination number (with few exceptions to show structural relations).


To distinguish from classical Strunz numbering, on hierarchical "group" level, a numbering with 3 digits is used, like "5.CB.005. Paulišite", instead of 2 digits (like "5.CB.05.") in the Strunz system.


© Thomas Witzke (2023)


HOME
FOTO ATLAS
SYSTEMATIK